Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
1.
Glob Chang Biol ; 30(4): e17274, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38605677

RESUMO

Climate change and other anthropogenic disturbances are increasing liana abundance and biomass in many tropical and subtropical forests. While the effects of living lianas on species diversity, ecosystem carbon, and nutrient dynamics are receiving increasing attention, the role of dead lianas in forest ecosystems has been little studied and is poorly understood. Trees and lianas coexist as the major woody components of forests worldwide, but they have very different ecological strategies, with lianas relying on trees for mechanical support. Consequently, trees and lianas have evolved highly divergent stem, leaf, and root traits. Here we show that this trait divergence is likely to persist after death, into the afterlives of these organs, leading to divergent effects on forest biogeochemistry. We introduce a conceptual framework combining horizontal, vertical, and time dimensions for the effects of liana proliferation and liana tissue decomposition on ecosystem carbon and nutrient cycling. We propose a series of empirical studies comparing traits between lianas and trees to answer questions concerning the influence of trait afterlives on the decomposability of liana and tree organs. Such studies will increase our understanding of the contribution of lianas to terrestrial biogeochemical cycling, and help predict the effects of their increasing abundance.


Assuntos
Ecossistema , Clima Tropical , Florestas , Árvores , Carbono
3.
ACS Appl Mater Interfaces ; 16(13): 17051-17061, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38511856

RESUMO

Luminescent perovskite nanocrystals (NCs), possessing the advantages of low cost, easy detection, and excellent luminescence, are becoming more and more significant in the fields of information encryption and decryption. Most hydrochromic perovskite NCs for information encryption have moderate reversibility and are easily passively decrypted by water in the moist air, limiting their practical applications. Herein, a lyochromic material is synthesized based on reversible phase transition between luminescent CsPbBr3-HBr (pretreating CsPbBr3 with HBr) and nonluminescent Cs4PbBr6, exhibiting excellent reversibility in 50 cycles triggered by CsBr solution. HBr treatment boosts the ion migration of NCs via diminishing surface ligands and passivating Br vacancy, assisting CsBr concentration acting as a crucial factor in dynamic ion exchange equilibrium between the trigger solution and CsPbBr3-HBr. By utilizing CsPbBr3-HBr as a safety ink, the CsBr-triggered photoluminescence switch has been demonstrated to be reproducible, stable, and reliable for information encryption and decryption.

4.
Int J Nanomedicine ; 19: 2957-2972, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549840

RESUMO

Introduction: Nano-mesoporous bioactive glass and RGD peptide-coated collagen membranes have great potential in wound healing. However, the application of their compound has not been further studied. Our purpose is to prepare a novel bioactive collagen scaffold containing both NMBG stent and adhesion peptides (BM), which then proves its promising prospect the assessment of physical properties, biocompatibility, GSK-3ß/ß-catenin signaling axis and toxicological effects. Methods: The structural and morphological changes of BM were analyzed using scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). In vivo, wound healing of BM was assessed in SD rats through dynamic monitoring and calculation of wound healing rate. Immunohistofluorescence (IHF), H&E, and Masson staining were utilized; in vitro, primary cell culture, and a variety of assays including CCK-8, Transwell, Scratch, Immunocytofluorescence (ICF), and Western blot (WB) were performed, both for morphology and molecular analysis. Results and Discussion: Preparation of BM involved attaching NMBG to RGD-exposed collagen while avoiding the use of toxic chemical reagents. BM exhibited a distinctive superficial morphology with increased Si content, indicating successful NMBG attachment. In vivo studies on SD rats demonstrated the superior wound healing capability of BM, as evidenced by accelerated wound closure, thicker epithelial layers, and enhanced collagen deposition compared to the NC group. Additionally, BM promoted skin fibroblast migration and proliferation, possibly through activation of the GSK-3ß/ß-catenin signaling axis, which was crucial for tissue regeneration. This study underscored the potential of BM as an effective wound-healing dressing. Conclusion: A new method for synthesizing ECM-like membranes has been developed using nano-mesoporous bioactive glass and collagen-derived peptides. This approach enhances the bioactivity of biomaterials through surface functionalization and growth factor-free therapy.


Assuntos
Biomimética , beta Catenina , Ratos , Animais , Glicogênio Sintase Quinase 3 beta/metabolismo , beta Catenina/metabolismo , Ratos Sprague-Dawley , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos , Proliferação de Células , Peptídeos/farmacologia
5.
J Cancer Res Clin Oncol ; 150(3): 141, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38504026

RESUMO

PURPOSE: The purpose of the current investigation is to compare the efficacy of different diffusion models and diffusion kurtosis imaging (DKI) in differentiating stage IA endometrial carcinoma (IAEC) from benign endometrial lesions (BELs). METHODS: Patients with IAEC, endometrial hyperplasia (EH), or a thickened endometrium confirmed between May 2016 and August 2022 were retrospectively enrolled. All of the patients underwent a preoperative pelvic magnetic resonance imaging (MRI) examination. The apparent diffusion coefficient (ADC) from the mono-exponential model, pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), perfusion fraction (f) from the bi-exponential model, distributed diffusion coefficient (DDC), water molecular diffusion heterogeneity index from the stretched-exponential model, diffusion coefficient (Dk) and diffusion kurtosis (K) from the DKI model were calculated. Receiver operating characteristic (ROC) analysis was used to evaluate the diagnostic efficiency. RESULTS: A total of 90 patients with IAEC and 91 patients with BELs were enrolled. The values of ADC, D, DDC and Dk were significantly lower and D* and K were significantly higher in cases of IAEC (p < 0.05). Multivariate analysis showed that K was the only predictor. The area under the ROC curve of K was 0.864, significantly higher compared with the ADC (0.601), D (0.811), D* (0.638), DDC (0.743) and Dk (0.675). The sensitivity, specificity and accuracy of K were 78.89%, 85.71% and 80.66%, respectively. CONCLUSION: Advanced diffusion-weighted imaging models have good performance for differentiating IAEC from EH and endometrial thickening. Among all of the diffusion parameters, K showed the best performance and was the only independent predictor. Diffusion kurtosis imaging was defined as the most valuable model in the current context.


Assuntos
Imagem de Difusão por Ressonância Magnética , Neoplasias do Endométrio , Feminino , Humanos , Sensibilidade e Especificidade , Estudos Retrospectivos , Curva ROC , Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias do Endométrio/diagnóstico por imagem
6.
Plant Physiol Biochem ; 210: 108541, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552264

RESUMO

Heat shock transcription factors (Hsfs) play multifaceted roles in plant growth, development, and responses to environmental factors. However, their involvement in seed dormancy and germination processes has remained elusive. In this study, we identified a wheat class B Hsf gene, TaHsf-7A, with higher expression in strong-dormancy varieties compared to weak-dormancy varieties during seed imbibition. Specifically, TaHsf-7A expression increased during seed dormancy establishment and subsequently declined during dormancy release. Through the identification of a 1-bp insertion (ins)/deletion (del) variation in the coding region of TaHsf-7A among wheat varieties with different dormancy levels, we developed a CAPS marker, Hsf-7A-1319, resulting in two allelic variations: Hsf-7A-1319-ins and Hsf-7A-1319-del. Notably, the allele Hsf-7A-1319-ins correlated with a reduced seed germination rate and elevated dormancy levels, while Hsf-7A-1319-del exhibited the opposite trend across 175 wheat varieties. The association of TaHsf-7A allelic status with seed dormancy and germination levels was confirmed in various genetically modified species, including Arabidopsis, rice, and wheat. Results from the dual luciferase assay demonstrated notable variations in transcriptional activity among transformants harboring distinct TaHsf-7A alleles. Furthermore, the levels of abscisic acid (ABA) and gibberellin (GA), along with the expression levels of ABA and GA biosynthesis genes, showed significant differences between transgenic rice lines carrying different alleles of TaHsf-7A. These findings represent a significant step towards a comprehensive understanding of TaHsf-7A's involvement in the dormancy and germination processes of wheat seeds.


Assuntos
Regulação da Expressão Gênica de Plantas , Germinação , Fatores de Transcrição de Choque Térmico , Dormência de Plantas , Proteínas de Plantas , Triticum , Triticum/genética , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Dormência de Plantas/genética , Germinação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Arabidopsis/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Alelos
7.
J Neurosci ; 44(12)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38418221

RESUMO

As the most common form of dementia in the world, Alzheimer's disease (AD) is a progressive neurological disorder marked by cognitive and behavioral impairment. According to previous researches, abundant social connections shield against dementia. However, it is still unclear how exactly social interactions benefit cognitive abilities in people with AD and how this process is used to increase their general cognitive performance. In this study, we found that single novel social (SNS) stimulation promoted c-Fos expression and increased the protein levels of mature ADAM10/17 and sAPPα in the ventral hippocampus (vHPC) of wild-type (WT) mice, which are hippocampal dorsal CA2 (dCA2) neuron activity and vHPC NMDAR dependent. Additionally, we discovered that SNS caused similar changes in an AD model, FAD4T mice, and these alterations could be reversed by α-secretase inhibitor. Furthermore, we also found that multiple novel social (MNS) stimulation improved synaptic plasticity and memory impairments in both male and female FAD4T mice, accompanied by α-secretase activation and Aß reduction. These findings provide insight into the process underpinning how social interaction helps AD patients who are experiencing cognitive decline, and we also imply that novel social interaction and activation of the α-secretase may be preventative and therapeutic in the early stages of AD.


Assuntos
Doença de Alzheimer , Humanos , Masculino , Camundongos , Feminino , Animais , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Camundongos Transgênicos , Transtornos da Memória/metabolismo , Hipocampo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças
8.
Tree Physiol ; 44(3)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38366388

RESUMO

Low temperatures largely determine the geographic limits of plant species by reducing survival and growth. Inter-specific differences in the geographic distribution of mangrove species have been associated with cold tolerance, with exclusively tropical species being highly cold-sensitive and subtropical species being relatively cold-tolerant. To identify species-specific adaptations to low temperatures, we compared the chilling stress response of two widespread Indo-West Pacific mangrove species from Rhizophoraceae with differing latitudinal range limits-Bruguiera gymnorhiza (L.) Lam. ex Savigny (subtropical range limit) and Rhizophora apiculata Blume (tropical range limit). For both species, we measured the maximum photochemical efficiency of photosystem II (Fv/Fm) as a proxy for the physiological condition of the plants and examined gene expression profiles during chilling at 15 and 5 °C. At 15 °C, B. gymnorhiza maintained a significantly higher Fv/Fm than R. apiculata. However, at 5 °C, both species displayed equivalent Fv/Fm values. Thus, species-specific differences in chilling tolerance were only found at 15 °C, and both species were sensitive to chilling at 5 °C. At 15 °C, B. gymnorhiza downregulated genes related to the light reactions of photosynthesis and upregulated a gene involved in cyclic electron flow regulation, whereas R. apiculata downregulated more RuBisCo-related genes. At 5 °C, both species repressed genes related to CO2 assimilation. The downregulation of genes related to light absorption and upregulation of genes related to cyclic electron flow regulation are photoprotective mechanisms that likely contributed to the greater photosystem II photochemical efficiency of B. gymnorhiza at 15 °C. The results of this study provide evidence that the distributional range limits and potentially the expansion rates of plant species are associated with differences in the regulation of photosynthesis and photoprotective mechanisms under low temperatures.


Assuntos
Rhizophoraceae , Rhizophoraceae/genética , Rhizophoraceae/metabolismo , Complexo de Proteína do Fotossistema II/genética , Temperatura Baixa , Fotossíntese/genética , Perfilação da Expressão Gênica
9.
Nanoscale ; 16(9): 4760-4767, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38303682

RESUMO

Micro/nano-LEDs for augmented reality (AR) and virtual reality (VR) applications face the challenge that the edge effect in micro-LEDs becomes significant as the size of devices shrinks. This issue can be effectively addressed through thin-film encapsulation, where zero stress of the thin film is a crucial factor, apart from the barrier property. Herein, a stress-modulation strategy was developed through a binary-cycle atomic-layer deposition (ALD) process combining PEALD SiO2 (compressive stress) and thermal ALD Al2O3 (tensile stress) in the same process window. The hybrid ALD process allows avoiding extra thermal stress generation and enables precise modulation of the atomic-scale thickness, thereby allowing the fabrication of nanolaminates with modulated stress. The optical nanolaminate developed herein achieved a stress level of near-zero, representing one of the best among reported studies. The structural design, characterized by a high-low refractive index, tortuous permeation path, and ultra-thin thickness, remarkably improved the optical transmittance and barrier properties (8.68 × 10-6 g m-2 day-1) of the nanolaminate. Moreover, the micro-LED encapsulated with SA2/1 exhibited excellent stability under thermal cycling, damp heat, and applied stress conditions. The mechanical stability of the nanolaminate was due to the strong interaction between Si-O and Al-O and the abundance of Si-O-Al bonding in the interface. Overall, the ALD-coating process provides a new avenue for accurately controlling the stress on nanolaminates, and has potential application to bolster the reliability of optoelectronic devices.

10.
J Xray Sci Technol ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38306089

RESUMO

PURPOSE: The explore the added value of peri-calcification regions on contrast-enhanced mammography (CEM) in the differential diagnosis of breast lesions presenting as only calcification on routine mammogram. METHODS: Patients who underwent CEM because of suspicious calcification-only lesions were included. The test set included patients between March 2017 and March 2019, while the validation set was collected between April 2019 and October 2019. The calcifications were automatically detected and grouped by a machine learning-based computer-aided system. In addition to extracting radiomic features on both low-energy (LE) and recombined (RC) images from the calcification areas, the peri-calcification regions, which is generated by extending the annotation margin radially with gradients from 1 mm to 9 mm, were attempted. Machine learning (ML) models were built to classify calcifications into malignant and benign groups. The diagnostic matrices were also evaluated by combing ML models with subjective reading. RESULTS: Models for LE (significant features: wavelet-LLL_glcm_Imc2_MLO; wavelet-HLL_firstorder_Entropy_MLO; wavelet-LHH_glcm_DifferenceVariance_CC; wavelet-HLL_glcm_SumEntropy_MLO;wavelet-HLH_glrlm_ShortRunLowGray LevelEmphasis_MLO; original_firstorder_Entropy_MLO; original_shape_Elongation_MLO) and RC (significant features: wavelet-HLH_glszm_GrayLevelNonUniformityNormalized_MLO; wavelet-LLH_firstorder_10Percentile_CC; original_firstorder_Maximum_MLO; wavelet-HHH_glcm_Autocorrelation_MLO; original_shape_Elongation_MLO; wavelet-LHL_glszm_GrayLevelNonUniformityNormalized_MLO; wavelet-LLH_firstorder_RootMeanSquared_MLO) images were set up with 7 features. Areas under the curve (AUCs) of RC models are significantly better than those of LE models with compact and expanded boundary (RC v.s. LE, compact: 0.81 v.s. 0.73, p <  0.05; expanded: 0.89 v.s. 0.81, p <  0.05) and RC models with 3 mm boundary extension yielded the best performance compared to those with other sizes (AUC = 0.89). Combining with radiologists' reading, the 3mm-boundary RC model achieved a sensitivity of 0.871 and negative predictive value of 0.937 with similar accuracy of 0.843 in predicting malignancy. CONCLUSIONS: The machine learning model integrating intra- and peri-calcification regions on CEM has the potential to aid radiologists' performance in predicting malignancy of suspicious breast calcifications.

11.
Plant Divers ; 46(1): 126-133, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38343598

RESUMO

Lipids may play an important role in preventing gas embolisms by coating nanobubbles in xylem sap. Few studies on xylem sap lipids have been reported for temperate plants, and it remain unclear whether sap lipids have adaptational significance in tropical plants. In this study, we quantify the lipid composition of xylem sap for angiosperm species from a tropical savanna (seven species) and a seasonal rainforest (five species) using mass spectrometry. We found that all twelve species studied contained lipids in their xylem sap, including galactolipids, phospholipids and triacylglycerol, with a total lipid concentration ranging from 0.09 to 0.26 nmol/L. There was no difference in lipid concentration or composition between plants from the two sites, and the lipid concentration was negatively related to species' open vessel volume. Furthermore, savanna species showed little variation in lipid composition between the dry and the rainy season. These results support the hypothesis that xylem sap lipids are derived from the cytoplasm of individual conduit cells, remain trapped inside individual conduits, and undergo few changes in composition over consecutive seasons. A xylem sap lipidomic data set, which includes 12 tropical tree species from this study and 11 temperate tree species from literature, revealed no phylogenetic signals in lipid composition for these species. This study fills a knowledge gap in the lipid content of xylem sap in tropical trees and provides additional support for their common distribution in xylem sap of woody angiosperms. It appears that xylem sap lipids have no adaptive significance.

12.
Tissue Cell ; 87: 102304, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38219450

RESUMO

Blood vessels are the tubes through which blood flows and are divided into three types: millimeter-scale arteries, veins, and capillaries as well as micrometer-scale capillaries. Arteries and veins are the conduits that carry blood, while capillaries are where blood exchanges substances with tissues. Blood vessels are mainly composed of collagen fibers, elastic fibers, glycosaminoglycans and other macromolecular substances. There are about 19 feet of blood vessels per square inch of skin in the human body, which shows how important blood vessels are to the human body. Because cardiovascular disease and vascular trauma are common in the population, a great number of researches have been carried out in recent years by simulating the structures and functions of the person's own blood vessels to create different levels of tissue-engineered blood vessels that can replace damaged blood vessels in the human body. However, due to the lack of effective oxygen and nutrient delivery mechanisms, these tissue-engineered vessels have not been used clinically. Therefore, in order to achieve better vascularization of engineered vascular tissue, researchers have widely explored the design methods of vascular systems of various sizes. In the near future, these carefully designed and constructed tissue engineered blood vessels are expected to have practical clinical applications. Exploring how to form multi-scale vascular networks and improve their compatibility with the host vascular system will be very beneficial in achieving this goal. Among them, 3D printing has the advantages of high precision and design flexibility, and the decellularized matrix retains active ingredients such as collagen, elastin, and glycosaminoglycan, while removing the immunogenic substance DNA. In this review, technologies and advances in 3D printing and decellularization-based artificial blood vessel manufacturing methods are systematically discussed. Recent examples of vascular systems designed are introduced in details, the main problems and challenges in the clinical application of vascular tissue restriction are discussed and pointed out, and the future development trends in the field of tissue engineered blood vessels are also prospected.


Assuntos
Substitutos Sanguíneos , Humanos , Substitutos Sanguíneos/análise , Engenharia Tecidual/métodos , Matriz Extracelular/química , Colágeno , Impressão Tridimensional , Alicerces Teciduais
13.
Tree Physiol ; 44(3)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38281245

RESUMO

Tropical karst habitats are characterized by limited and patchy soil, large rocky outcrops and porous substrates, resulting in high habitat heterogeneity and soil moisture fluctuations. Xylem hydraulic efficiency and safety can determine the drought adaptation and spatial distribution of woody plants growing in karst environments. In this study, we measured sapwood-specific hydraulic conductivity (Ks), vulnerability to embolism, wood density, saturated water content, and vessel and pit anatomical characteristics in the branch stems of 12 evergreen tree species in a tropical karst seasonal rainforest in southwestern China. We aimed to characterize the effects of structural characteristics on hydraulic efficiency and safety. Our results showed that there was no significant correlation between Ks and hydraulic safety across the tropical karst woody species. Ks was correlated with hydraulic vessel diameter (r = 0.80, P < 0.05) and vessel density (r = -0.60, P < 0.05), while the stem water potential at 50 and 88% loss of hydraulic conductivity (P50 and P88) were both significantly correlated with wood density (P < 0.05) and saturated water content (P = 0.052 and P < 0.05, respectively). High stem water storage capacity was associated with low cavitation resistance possibly because of its buffering the moisture fluctuations in karst environments. However, both Ks and P50/P88 were decoupled from the anatomical traits of pit and pit membranes. This may explain the lack of tradeoff between hydraulic safety and efficiency in tropical karst evergreen tree species. Our results suggest that diverse hydraulic trait combination may facilitate species coexistence in karst environments with high spatial heterogeneity.


Assuntos
Embolia , Árvores , Água , Xilema , Secas , Solo
14.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279235

RESUMO

The presence of the ozone hole increases the amount of UV radiation reaching a plant's surface, and UV-B radiation is an abiotic stress capable of affecting plant growth. Rhododendron chrysanthum Pall. (R. chrysanthum) grows in alpine regions, where strong UV-B radiation is present, and has been able to adapt to strong UV-B radiation over a long period of evolution. We investigated the response of R. chrysanthum leaves to UV-B radiation using widely targeted metabolomics and transcriptomics. Although phytohormones have been studied for many years in plant growth and development and adaptation to environmental stresses, this paper is innovative in terms of the species studied and the methods used. Using unique species and the latest research methods, this paper was able to add information to this topic for the species R. chrysanthum. We treated R. chrysanthum grown in a simulated alpine environment, with group M receiving no UV-B radiation and groups N and Q (externally applied abscisic acid treatment) receiving UV-B radiation for 2 days (8 h per day). The results of the MN group showed significant changes in phenolic acid accumulation and differential expression of genes related to phenolic acid synthesis in leaves of R. chrysanthum after UV-B radiation. We combined transcriptomics and metabolomics data to map the metabolic regulatory network of phenolic acids under UV-B stress in order to investigate the response of such secondary metabolites to stress. L-phenylalanine, L-tyrosine and phenylpyruvic acid contents in R. chrysanthum were significantly increased after UV-B radiation. Simultaneously, the levels of 3-hydroxyphenylacetic acid, 2-phenylethanol, anthranilate, 2-hydroxycinnamic acid, 3-hydroxycinnamic acid, α-hydroxycinnamic acid and 2-hydroxy-3-phenylpropanoic acid in this pathway were elevated in response to UV-B stress. In contrast, the study in the NQ group found that externally applied abscisic acid (ABA) in R. chrysanthum had greater tolerance to UV-B radiation, and phenolic acid accumulation under the influence of ABA also showed greater differences. The contents of 2-phenylethanol, 1-o-p-coumaroyl-ß-d-glucose, 2-hydroxy-3-phenylpropanoic acid, 3-(4-hydroxyphenyl)-propionic acid and 3-o-feruloylquinic ac-id-o-glucoside were significantly elevated in R. chrysanthum after external application of ABA to protect against UV-B stress. Taken together, these studies of the three groups indicated that ABA can influence phenolic acid production to promote the response of R. chrysanthum to UV-B stress, which provided a theoretical reference for the study of its complex molecular regulatory mechanism.


Assuntos
Glucose , Hidroxibenzoatos , Álcool Feniletílico , Fenilpropionatos , Rhododendron , Ácido Abscísico/metabolismo , Rhododendron/genética , Ácidos Cumáricos , Raios Ultravioleta
15.
Oncogene ; 43(1): 35-46, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007537

RESUMO

Homologous recombination (HR) is a major DNA double-strand break (DSB) repair pathway of clinical interest because of treatment with poly(ADP-ribose) polymerase inhibitors (PARPi). Cooperation between RAD51 and BRCA2 is pivotal for DNA DSB repair, and its dysfunction induces HR deficiency and sensitizes cancer cells to PARPi. The depletion of the DEAD-box protein DDX11 was found to suppress HR in hepatocellular carcinoma (HCC) cells. The HR ability of HCC cells is not always dependent on the DDX11 level because of natural DDX11 mutations. In Huh7 cells, natural DDX11 mutations were detected, increasing the susceptibility of Huh7 cells to olaparib in vitro and in vivo. The HR deficiency of Huh7 cells was restored when CRISPR/Cas9-mediated knock-in genomic editing was used to revert the DDX11 Q238H mutation to wild type. The DDX11 Q238H mutation impeded the phosphorylation of DDX11 by ATM at serine 237, preventing the recruitment of RAD51 to damaged DNA sites by disrupting the interaction between RAD51 and BRCA2. Clinically, a high level of DDX11 correlated with advanced clinical characteristics and a poor prognosis and served as an independent risk factor for overall and disease-free survival in patients with HCC. We propose that HCC with a high level of wild-type DDX11 tends to be more resistant to PARPi because of enhanced recombination repair, and the key mutation of DDX11 (Q238H) is potentially exploitable.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Antineoplásicos/farmacologia , Recombinação Homóloga/genética , DNA , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , DNA Helicases/genética , RNA Helicases DEAD-box/genética , Proteína BRCA2/genética
16.
Shock ; 61(2): 229-239, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37878485

RESUMO

ABSTRACT: Background: Hepatic ischemia-reperfusion injury (HIRI) is a major complication affecting patient prognosis during the period after orthotopic liver transplantation (OLT). Although an increasing number of scientists have investigated the molecular biology of ischemia-reperfusion injury (IRI) during OLT in animal and cellular models in recent years, studies using comprehensive and high-quality sequencing results from human specimens to screen for key molecules are still lacking. Aims: The objective of this study is to explore the molecular biological pathways and key molecules associated with HIRI during OLT through RNA sequencing and related bioinformatics analysis techniques. Methods: The study was done by performing mRNA sequencing on liver tissue samples obtained from 15 cases of in situ liver transplantation patients who experienced ischemia and reperfusion injury within 1 year at Guizhou Medical University, and combined with bioinformatics analysis and machine learning methods, we identified the genes and transcription factors that are closely associated with IRI during in situ liver transplantation surgery. Results: There were 877 differentially expressed genes (DEGs) identified in the included liver samples, of which 817 DEGs were upregulated and 60 were downregulated. Functional enrichment analysis revealed significant enrichment of immune-related terms, such as inflammation, defense responses, responses to cytokines, immune system processes, and cellular activation. In addition, core gene enrichment analysis after cytoHubba screening suggested that liver reperfusion injury might be associated with translation-related elements as a pathway together with protein translation processes. Machine learning with the weighted correlation network analysis screening method identified PTGS2, IRF1, and CDKN1A as key genes in the reperfusion injury process. Conclusions: This study demonstrated that the pathways and genomes whose expression is altered throughout the reperfusion process might be critical for the progression of HIRI during OLT.


Assuntos
Transplante de Fígado , Traumatismo por Reperfusão , Animais , Humanos , Transplante de Fígado/métodos , Traumatismo por Reperfusão/metabolismo , Isquemia/complicações , Citocinas/genética , Perfilação da Expressão Gênica
17.
Sci Total Environ ; 912: 169512, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38145685

RESUMO

Epidemiology has shown that fluoride exposure is associated with the occurrence of diabetes. However, whether fluoride affects diabetic encephalopathy is unclear. Elderly diabetic patients in areas with endemic (n = 169) or no fluorosis (108) and controls (85) underwent Montreal Cognitive Assessment. Sprague-Dawley rats receiving streptozotocin and/or different fluoride doses were examined for spatial learning and memory, brain morphology, blood-brain barrier, fasting blood glucose and insulin. Cultured SH-SY5Y cells were treated with 50 mM glucose and/or low- or high-dose fluoride, and P53-knockdown or poly-ADP-ribose polymerase-1 (PARP-1) inhibition. The levels of PARP-1, P53, poly-ADP-ribose (PAR), apoptosis-inducing factor (AIF), and phosphorylated-histone H2A.X (ser139) were measured by Western blotting. Reactive oxygen species (ROS), 8-hydroxydeguanosine (8-OHdG), PARP-1 activity, acetyl-P53, nicotinamide adenine dinucleotide (NAD+), activities of mitochondrial hexokinase1 (HK1) and citrate synthase (CS), mitochondrial membrane potential and apoptosis were assessed biochemically. Cognition of diabetic patients in endemic fluorosis areas was poorer than in other regions. In diabetic rats, fasting blood glucose, insulin resistance and blood-brain barrier permeability were elevated, while spatial learning and memory and Nissl body numbers in neurons declined. In these animals, expression and activity of P53 and PARP-1 and levels of NAD+, PAR, ROS, 8-OHdG, p-histone H2A.X (ser139), AIF and apoptosis content increased; whereas mitochondrial HK1 and CS activities and membrane potential decreased. SH-SY5Y cells exposed to glucose exhibited changes identical to diabetic rats. The changes in diabetic rats and cells treated with glucose were aggravated by fluoride. P53-knockout or PARP-1 inhibition mitigated the effects of glucose with/without low-dose fluoride. Elevation of diabetic encephalopathy was induced by exposure to fluoride and the underlying mechanism may involve overactivation of the PARP-1/P53 pathway.


Assuntos
Encefalopatias , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hipoglicemia , Neuroblastoma , Humanos , Ratos , Animais , Idoso , Fluoretos/metabolismo , Histonas , Estreptozocina , Proteína Supressora de Tumor p53 , Ratos Sprague-Dawley , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases , Espécies Reativas de Oxigênio/metabolismo , NAD/metabolismo , Glicemia , Neuroblastoma/complicações , Cognição , Adenosina Difosfato Ribose
18.
Biomolecules ; 13(12)2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38136571

RESUMO

The plant defense system is immediately triggered by UV-B irradiation, particularly the production of metabolites and enzymes involved in the UV-B response. Although substantial research on UV-B-related molecular responses in Arabidopsis has been conducted, comparatively few studies have examined the precise consequences of direct UV-B treatment on R. chrysanthum. The ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) methodology and TMT quantitative proteomics are used in this study to describe the metabolic response of R. chrysanthum to UV-B radiation and annotate the response mechanism of the primary metabolism and phenolic metabolism of R. chrysanthum. The outcomes demonstrated that following UV-B radiation, the primary metabolites (L-phenylalanine and D-lactose*) underwent considerable changes to varying degrees. This gives a solid theoretical foundation for investigating the use of precursor substances, such as phenylalanine, to aid plants in overcoming abiotic stressors. The external application of ABA produced a considerable increase in the phenolic content and improved the plants' resistance to UV-B damage. Our hypothesis is that externally applied ABA may work in concert with UV-B to facilitate the transformation of primary metabolites into phenolic compounds. This hypothesis offers a framework for investigating how ABA can increase a plant's phenolic content in order to help the plant withstand abiotic stressors. Overall, this study revealed alterations and mechanisms of primary and secondary metabolic strategies in response to UV-B radiation.


Assuntos
Rhododendron , Cromatografia Líquida , Espectrometria de Massas em Tandem , Raios Ultravioleta , Plantas
19.
Genes (Basel) ; 14(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38002965

RESUMO

Ultraviolet-B (UV-B) radiation is a significant environmental factor influencing the growth and development of plants. MYBs play an essential role in the processes of plant responses to abiotic stresses. In the last few years, the development of transcriptome and acetylated proteome technologies have resulted in further and more reliable data for understanding the UV-B response mechanism in plants. In this research, the transcriptome and acetylated proteome were used to analyze Rhododendron chrysanthum Pall. (R. chrysanthum) leaves under UV-B stress. In total, 2348 differentially expressed genes (DEGs) and 685 differentially expressed acetylated proteins (DAPs) were found. The transcriptome analysis revealed 232 MYB TFs; we analyzed the transcriptome together with the acetylated proteome, and screened 4 MYB TFs. Among them, only RcMYB44 had a complete MYB structural domain. To investigate the role of RcMYB44 under UV-B stress, a homology tree was constructed between RcMYB44 and Arabidopsis MYBs, and it was determined that RcMYB44 shares the same function with ATMYB44. We further constructed the hormone signaling pathway involved in RcMYB44, revealing the molecular mechanism of resistance to UV-B stress in R. chrysanthum. Finally, by comparing the transcriptome and the proteome, it was found that the expression levels of proteins and genes were inconsistent, which is related to post-translational modifications of proteins. In conclusion, RcMYB44 of R. chrysanthum is involved in mediating the growth hormone, salicylic acid, jasmonic acid, and abscisic acid signaling pathways to resist UV-B stress.


Assuntos
Rhododendron , Rhododendron/genética , Proteoma/genética , Multiômica , Perfilação da Expressão Gênica , Transcriptoma/genética
20.
Plant Divers ; 45(5): 601-610, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37936818

RESUMO

Maintaining open flowers is critical for successful pollination and depends on long-term water and carbon balance. Yet the relationship between how flower hydraulic traits are coordinated in different habitats is poorly understood. Here, we hypothesize that the coordination and trade-offs between floral hydraulics and economics traits are independent of environmental conditions. To test this hypothesis, we investigated a total of 27 flower economics and hydraulic traits in six aquatic and six terrestrial herbaceous species grown in a tropical botanical garden. We found that although there were a few significant differences, most flower hydraulics and economics traits did not differ significantly between aquatic and terrestrial herbaceous plants. Both flower mass per area and floral longevity were significantly positively correlated with the time required for drying full-hydrated flowers to 70% relative water content. Flower dry matter content was strongly and positively related to drought tolerance of the flowers as indicated by flower water potential at the turgor loss point. In addition, there was a trade-off between hydraulic efficiency and the construction cost of a flower across species. Our results show that flowers of aquatic and terrestrial plants follow the same economics spectrum pattern. These results suggest a convergent flower economics design across terrestrial and aquatic plants, providing new insights into the mechanisms by which floral organs adapt to aquatic and terrestrial habitats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA